2 were different anomeric mixtures, they were hydrolyzed into their corresponding C_{3} monoacetates. ${ }^{14}$ Both synthetic and naturally derived substances proved to be the same 3.7:1 anomeric mixture and, finally, exhibited the same properties: $[\alpha]_{\mathrm{D}}-9.8^{\circ}$ (c $1.43, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) natural series, $[\alpha]_{\mathrm{D}}-9.7^{\circ}$ (c $0.51, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) synthetic series.

Acknowledgment. We thank Dr. G. R. Bebernitz for the preparation of some intermediates leading to compound 7. We thank Dr. Ashit Ganguly (Schering Corp.) for a generous sample of rosaramicin. Financial support from the NIH and the Merck Corp. are gratefully acknowledged.

Supplementary Material Available: Experimental procedures including NMR, IR, and mass spectral data (71 pages). Ordering information is given on any current masthead page.
(15) Both synthetic and naturally derived 2 were crystallized from ethyl acetate/hexane. A mixed melting point of these materials was undepressed.

Synthesis of a New Type of Metal Dithiolene Complex via an Induced Reaction of Acetylenes with a Ruthenium Sulfide

Thomas B. Rauchfuss,* Damian P. S. Rodgers, and Scott R. Wilson

School of Chemical Sciences University of Illinois at Urbana-Champaign
 Urbana, Illinois 61801
 Received December 23, 1985

The reactions of unsaturated organic compounds with naked main-group ligands is an active area of coordination chemistry. ${ }^{1}$ The present contribution to this field involves the chemically induced reaction of a soluble ruthenium sulfide with acetylenes. This project has resulted in the characterization of the simplest ruthenium sulfido complex and a unique bonding mode for a 1,2-alkene disulfide (dithiolene) ligand.

Our starting material was $\mathrm{Cp}_{2}{ }_{2} \mathrm{Ru}_{2} \mathrm{~S}_{4}\left(1, \mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{Et}\right)$, a highly soluble, air-stable, intensely blue compound. ${ }^{2}$ Compound 1 was prepared in ca. 15% yield from the reaction of 3.02 g of $\mathrm{Cp}^{*}{ }_{2} \mathrm{Ru}_{2}(\mathrm{CO})_{4}{ }^{3}$ and 0.62 g of S_{8} in 125 mL of boiling toluene for 18 h . The crude product was flash chromatographed on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and crystallized from cold hexane. An X-ray diffraction study showed that 1 is properly formulated as $\mathrm{Cp}^{*}{ }_{2} \mathrm{Ru}_{2}\left(\mu, \eta^{2}-\mathrm{S}_{2}\right)\left(\mu, \eta^{1}-\mathrm{S}_{2}\right)$ comparable to the recently reported iron analogues. ${ }^{4}$ Whereas the $\mathrm{Ru}-\mathrm{S}$ distances are normal for the $\mu, \eta^{2}-\mathrm{S}_{2}$, the $\mathrm{Ru}-\mathrm{S}$ distances for the parallel (μ, η^{1}) S_{2} are quite
(1) (a) Oxide reactions: Groves, J. T.; Watanabe, Y. J. Am. Chem. Soc. 1986, 108, 507. Collman, J. P.; Kodadek, T.; Raybuck, S. A., Brauman, J. T.; Papazian, L. M. J. Am. Chem. Soc. 1985, 108, 507. Herrmann, W. A.; Serrano, R.; Küsthardt, U.; Ziegler, M. L.; Guggolz, E., Zahn, T. Angew. Chem., Int. Ed. Engl. 1984, 23, 515. (b) Sulfide reactions: Adams, R. D.; Wang, S. Organometallics 1985, 4, 1902. Rajan, O. A.; McKenna, M.; Noordik, J.; Haltiwanger, R. C., Rakowski DuBois, M. Organometallics 1984, 3, 831. Bolinger, C. M.; Rauchfuss, T. B.; Rheingold, A. L. J. Am. Chem. Soc. 1983, 103, 6321. (c) Phosphinidine reactions: Lunnis, J.; MacLaughlin, S. A.; Taylor, N. J.; Carty, A. J.; Sappa, E. Organometallics 1985, 4, 2066. Marinetti, A.; Mathey, F. Organometallics 1984, 3, 456.
(2) Anal C, H, S. FABMS ($\mathrm{m} / \mathrm{z},{ }^{102} \mathrm{Ru}$) $630\left(\mathrm{P}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR (δ in ppm , J in $\mathrm{Hz}, \mathrm{CDCl}_{3}$) $2.23(\mathrm{q}, 4 \mathrm{H}, 7.3), 1.92(\mathrm{~s}, 12 \mathrm{H}), 1.87(\mathrm{~s}, 12 \mathrm{H}), 1.10(\mathrm{t}$, $6 \mathrm{H}, 7.4$). Compound 1 crystallized from hexane in the space group $P \overline{1}$, with cell dimensions $a=18.386$ (4) $\AA, b=18.868$ (4) $\AA, c=8.564$ (3) $\AA, \alpha=$ $98.64(2)^{\circ}, \beta=91.12(2)^{\circ}, \gamma=117.48(2)^{\circ}, V=2592(1) \AA^{3}, Z=4, \rho_{\text {exp }}$ $=1.60 \mathrm{~g} \mathrm{~cm}^{-3}$, for $\pm h, \pm k,+l$ in the range $3.0^{\circ}<2 \theta<46^{\circ}$. These data were averaged to ($R_{\mathrm{av}}=0.018$). The structure 7256 independent reflections was solved by direct methods (Shelx), refined with use of 4377 intensities (I > $2.58 \sigma(n)$ to $R=0.053$ and $R_{\mathrm{w}}=0.067$
(3) Bailey, N. A.; Radford, S. L.; Sanderson, J. A.; Tabatabaian, K.; White, C.; Worthington, J. M. J. Organomet. Chem. 1978, 154, 343.
(4) Chenaud, H.; Ducourant, A. M.; Giannotti, C. J. Organomet. Chem. 1980, 190, 201. Weberg, R.; Haltiwanger, R. C.; Rakowski DuBois, M. Organometallics 1985, 4, 1315 . Brunner, H.; Janietz, N.; Meier, W.; Sergeson, G.; Wachter, J.; Zahn, T.; Ziegler, M. L. Angew. Chem., Int. Ed. Engl. 1985, 24, 1060.

Figure 1. ORTEP of the $\left(\mathrm{C}_{9} \mathrm{Me}_{4} \mathrm{Et}^{2}\right)_{2} \mathrm{Ru}_{2} \mathrm{~S}_{4}$ molecule (1). Representative distances (\AA) and angles (deg): $\mathrm{Ru}(1)-\mathrm{S}(1), 2.195$ (4); $\mathrm{Ru}(1)-\mathrm{S}(3)$, 2.382 (4); S(1)-S(2), 2.020 (5); S(3)-S(4), 2.050 (4); $\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{S}(2)$, 112.9 (2); $\mathrm{Ru}(1)-\mathrm{S}(3)-\mathrm{Ru}(2) ; 104.1$ (1); $\mathrm{Ru}(1)-\mathrm{S}(3)-\mathrm{S}(4), 64.9$ (1). The So..S distances between the two S_{2} subunits are 3.39-3.42 \AA.

Figure 2. ORTEP of the $\left(\mathrm{C}_{5} \mathrm{Me}_{4} E t\right)_{2} \mathrm{Ru}_{2} \mathrm{~S}_{2} \mathrm{C}_{2} \mathrm{Ph}_{2}$ molecule (3). Representative distances (\AA) and angles (deg): $\mathrm{Ru}-\mathrm{Ru}, 2.980$ (1); $\mathrm{Ru}(1)-\mathrm{S}(1)$, 2.253 (3); $\mathrm{Ru}(2)-\mathrm{S}(1), 2.428$ (3); $\mathrm{Ru}-\mathrm{Si}(1)-\mathrm{Ru}, 79.00$ (8); Ru(1)-S-(1)-C(29), 109.5 (3); $\mathrm{Ru}(2)-\mathrm{S}(1)-\mathrm{C}(29), 60.7$ (3).
short at $2.20 \AA$ and indicate multiple bonding ${ }^{5}$ between the ruthenium centers and this disulfur ligand.

A compound tentatively identified as $\mathrm{Cp}^{*}{ }_{4} \mathrm{Ru}_{4} \mathrm{~S}_{6}$ (2) was also isolated in ca. 20% yield in the synthesis of $1 .{ }^{6}$ Compound $\mathbf{2}$ is

[^0]formed in similar yield when toluene solutions of 1 are treated with 1 equiv of tri- n-butylphosphine $\left(\mathrm{PBu}_{3}\right)$ at $70{ }^{\circ} \mathrm{C}$ for 2 h followed by evaporation and trituration with aqueous methanol. This unusual species can be easily crystallized from cold hexane. The ${ }^{1} \mathrm{H}$ NMR spectrum of 2 shows three nonequivalent Cp^{*} ligands ($1: 1: 2$) and its structure is suggested to resemble that for $\mathrm{Cp}_{4} \mathrm{Fe}_{4} \mathrm{~S}_{2}\left(\mathrm{~S}_{2}\right)_{2}{ }^{7} \quad$ The conversion of 1 into a larger cluster is reminiscent of our previous observation that $(\mathrm{MeCp})_{2} \mathrm{~V}_{2} \mathrm{~S}_{4}$ reacts with PBu_{3} to give $(\mathrm{MeCp})_{4} \mathrm{~V}_{4} \mathrm{~S}_{4} .{ }^{8}$

When toluene solutions of 1 are treated with PBu_{3} (2 equiv) in the presence of diphenylacetylene (1 equiv, $70^{\circ} \mathrm{C}, 2 \mathrm{~h}$) one obtains, after solvent evaporation and trituration with methanol, $\mathrm{Cp}_{2}{ }_{2} \mathrm{Ru}_{2} \mathrm{~S}_{2} \mathrm{C}_{2} \mathrm{Ph}_{2}$ (3) as red brown crystals from pentane in ca. 70% yield (eq 1). ${ }^{9}$ It is important to note that compound 1 does

$$
\begin{equation*}
\mathrm{Cp}^{*}{ }_{2} \mathrm{Ru}_{2} \mathrm{~S}_{4}+\mathrm{R}_{2} \mathrm{C}_{2}+2 \mathrm{PBu}_{3} \rightarrow \mathrm{Cp}^{*}{ }_{2} \mathrm{Ru}_{2} \mathrm{~S}_{2} \mathrm{C}_{2} \mathrm{R}_{2}+2 \mathrm{SPBu}_{3} \tag{1}
\end{equation*}
$$

$$
\mathrm{R}_{2}=\mathrm{Ph}_{2}(\mathbf{3}), \mathrm{PhH}, \mathrm{H}_{2}
$$

not react with $\mathrm{Ph}_{2} \mathrm{C}_{2}$ (2 equiv, $70^{\circ} \mathrm{C}, 2$ weeks). Furthermore compound 2 is not an intermediate in the dithiolene synthesis since it can be recovered in good yield after attempted reaction with $\mathrm{Ph}_{2} \mathrm{C}_{2}$ (2 equiv), alone or in the presence of PBu_{3} (2 equiv). The dithiolene synthesis also works well for acetylene and phenylacetylene. ${ }^{10}$ The reaction of $1, \mathrm{PBu}_{3}$ (1 equiv), and $\mathrm{C}_{2} \mathrm{H}_{2}(2 \mathrm{~atm})$ gave $\sim 25 \%$ yield of $\mathrm{Cp}^{*}{ }_{2} \mathrm{Ru}_{2} \mathrm{~S}_{2} \mathrm{C}_{2} \mathrm{H}_{2} ;{ }^{10}$ chromatographic workup of the products returned $\sim 35 \%$ yield of 1

An X-ray diffraction study shows that compound 3 is a square-pyramidal, nido cluster (Figure 2). ${ }^{11}$ The most distinctive structural feature of $\mathbf{3}$ is the bridging dithiolene ligand which is folded over so as to bind to one metal in an η^{4} manner. The dithiolene and the Cp^{*} ring carbon atoms are nearly equidistant ($\pm 0.02 \AA$) from $\mathrm{Ru}(2)$. Bridging 1,2 -dithiolene ligands are common ${ }^{12}$ but the present $\mu-\eta^{2}, \eta^{4}$ form is unique. ${ }^{13}$ Structurally, 3 is related to certain diazabutadiene complexes, e.g., $\mathrm{Mn}_{2}(\mu-$ $\left.\eta^{2}, \eta^{4}-\mathrm{CH}_{3} \mathrm{NCHCHNCH}_{3}\right)(\mathrm{CO})_{6},{ }^{14}$ and to the binuclear ferroles $\mathrm{Fe}_{2}\left(\mathrm{C}_{4} \mathrm{R}_{4}\right)(\mathrm{CO})_{6}{ }^{15}$ If the $\mu-\eta^{2}, \eta^{4}-\mathrm{R}_{2} \mathrm{C}_{2} \mathrm{~S}_{2}$ ligand is viewed as a neutral $8 \mathrm{e}^{-}$donor, $\mathbf{3}$ is seen to be an electron-precise $34 \mathrm{e}^{-}$species. The $\mathrm{Ru}-\mathrm{Ru}$ distance in $\mathbf{3}$ is 2.980 (1) \AA whereas the $\mathrm{Ru}-\mathrm{Ru}$ distance in $\mathbf{1}$ is nonbonding at 3.749 (1) \AA.

The ${ }^{1} \mathrm{H}$ NMR spectrum of 3 consists of four methyl singlets and two methyl triplets showing that the $\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{Et}$ ligands are nonequivalent but suggesting that both lie on a plane of symmetry. At $150^{\circ} \mathrm{C}$ in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{NO}_{2}$ solution, the separation of the closer pair of methyl singlets in its ${ }^{1} \mathrm{H}$ NMR spectrum ($\Delta \delta=5.5 \mathrm{~Hz}$ at 40

[^1]${ }^{\circ} \mathrm{C}$) narrows to 1.5 Hz . Therefore ΔG^{*} for the equivalencing of the two Ru centers is somewhat greater than $95 \mathrm{~kJ} / \mathrm{mol}$. We propose that a dynamic equilibrium of the type shown in eq 2 is

involved. Conceivably, related equilibria but with different energy minima apply to other dithiolene bridged complexes

The mechanism of the conversion of $\mathbf{1}$ into $\mathbf{3}$ and the generality of the structural motif illustrated by $\mathbf{3}$ are of further interest.

Acknowledgment. This research was funded by the National Science Foundation and, in part, the Illinois Coal Research Board. We also acknowledge the support of the donors of the Petroleum Research Fund, administered by the American Chemical Society. T.B.R. is grateful to the Camille and Henry Dreyfus Foundation for a Teacher-Scholar Fellowship.

Supplementary Material Available: Tables of bond distances, bond angles, thermal parameters, fractional coordinates, and structure factor tables for $\mathrm{Cp}^{*}{ }_{2} \mathrm{Ru}_{2} \mathrm{~S}_{2} \mathrm{C}_{2} \mathrm{Ph}_{2}$ and $\mathrm{Cp}^{*}{ }_{2} \mathrm{Ru}_{2} \mathrm{~S}_{4}$ (43 pages). Ordering information is given on any current masthead page.

Selective Deoxygenation of Secondary Alcohols by Photosensitized Electron-Transfer Reaction. A General Procedure for Deoxygenation of Ribonucleosides ${ }^{1}$

Isao Saito,* Hideyuki Ikehira, Ryuichiro Kasatani, Masakazu Watanabe, and Teruo Matsuura

Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto 606, Japan

Received December 23, 1985
While photosensitized electron-transfer reactions are currently attracting considerable mechanistic interest in organic photochemistry, ${ }^{2}$ synthetic methodology based on these reactions has been rather limited. ${ }^{3}$ We report a general and practically useful

[^2]
[^0]: (5) Millar, M. M.; O'Sullivan, T.; de Vries, N.; Koch, S. A. J. Am. Chem. Soc. 1985, 107, 3714
 (6) Anal. C, H, S. FDMS (m / z, ${ }^{102} \mathrm{Ru}$) $1196\left(\mathrm{P}^{+}\right), 1164\left(\mathrm{P}^{+}-\mathrm{S}\right), 1132$ ($\mathrm{P}^{+}-2 \mathrm{~S}$), $1047\left(\mathrm{P}^{+}-\mathrm{Cp}{ }^{*}\right) ;{ }^{1} \mathrm{H}$ NMR (see ref $2, \mathrm{C}_{6} \mathrm{D}_{6}$) $2.45(\mathrm{q}, 2 \mathrm{H}, 7.5$), $2.31(\mathrm{q}, 4 \mathrm{H}, 7.7), 2.11(\mathrm{~m}, 8 \mathrm{H}), 2.05(\mathrm{~s}, 6 \mathrm{H}), 1.78(\mathrm{~s}, 6 \mathrm{H}), 1.77(\mathrm{~s}, 6 \mathrm{H})$, $1.69(\mathrm{~s}, 6 \mathrm{H}), 1.64(\mathrm{~s}, 6 \mathrm{H}), 1.63(\mathrm{~s}, 6 \mathrm{H}), 1.60(\mathrm{~s}, 6 \mathrm{H}), 1.24(\mathrm{t}, 3 \mathrm{H}, 7.60)$, $0.98(\mathrm{t}, 6 \mathrm{H}, 7.4), 0.89(\mathrm{t}, 3 \mathrm{H}, 7.6)$.

[^1]: (7) Kubas, G. J.; Vergamini, P. J. Inorg. Chem. 1981, 20, 2667. Also see Dupre, N.; Hendriks, H. M. J.; Jordanov, J.; Gaillard, J.; Auric, P. Organometallics 1984, 3, 800.
 (8) Bolinger, C. M. Ph.D. Thesis, University of Illinois at UrbanaChampaign, 1984.
 (9) Anal C, H, S. FABMS (m / z) $744\left(\mathrm{P}^{+}\right), 566\left(\mathrm{P}^{+}-\mathrm{Ph}_{2} \mathrm{C}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 7.33$ and $6.96\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 2.50(\mathrm{q}, 2 \mathrm{H}, 7.5), 2.20(\mathrm{q}, 2 \mathrm{H}, 7.7)$, 2.04 (s, 6 H), 2.01 (s, 6 H), $1.71(\mathrm{~s}, 6 \mathrm{H}), 1.66$ (s, 6 H$), 1.07$ (t, $3 \mathrm{H}, 7.5$) 0.85 (t, $3 \mathrm{H}, 7.5$)
 (10) Characterized by ${ }^{1} \mathrm{H}$ NMR and FAB mass spectrometry
 (11) Compound $\mathbf{3}$ crystallized from pentane in the space group $P 2_{1} / n$, with cell dimensions $a=13.222$ (3) $\AA, b=16.312$ (4) $\AA, c=15.797$ (2) $\AA, V=$ 3299 (2) $\AA^{3}, \beta=104.48$ (2) $)^{\circ}, Z=4, \rho_{\text {exp }}=1.47 \mathrm{~g} \mathrm{~cm}^{-3}$. for $\pm h,-k,+l$ in the range $2.0^{\circ}<2 \theta<46.0^{\circ}$. These were averaged to ($R_{\mathrm{av}}=0.017$). The structure, 4576 independent reflections, was solved by direct methods (SHELX) refined with use of 3489 intensities ($I>2.58 \sigma(I)$) to $R=0.033$ and $R_{\mathrm{w}}=$ 0.046 .
 (12) For leading references on dithiolene chemistry, see: Alvarez, S. Vicente, R.; Hoffmann, R. J. Am. Chem. Soc. 1985, 107, 6253
 (13) The bonding of some dioxalene, azoxalene, and dithiolene chelates has been discussed in terms of both $\sigma\left(\eta^{2}\right)$ and $\pi\left(\eta^{4}\right)$ interactions: McMullen, A K.; Rothwell, I. P.; Huffman, J. C. J. Am. Chem. Soc. 1985, 107, 1072. Hofmann, P.; Frede, M.; Stauffert, P.; Lasser, W.; Thewalt, U. Angew. Chem., Int. Ed. Engl. 1985, 24, 712. Giolando, D. M.; Rauchfuss, T. B. J. Am. Chem Soc. 1984, 107, 6455.
 (14) Adams, R. D. J. Am. Chem. Soc. 1980, 102, 7476. For other examples of this type, see: Keijsper, J.; Polm, L.; van Koten, G.; Vrieze, K.; Nielson, E.; Stam, C. H. Organometallics 1985, 4, 2006. A review of 1,4-diazabutadiene complexes: van Koten, G.; Vrieze, K. Adv. Organomet. Chem. 1982 21, 152.
 (15) Hübener, F.; Weiss, E. J. Organomet. Chem. 1977, I29, 105.

[^2]: (1) Photoinduced reactions. 167
 (2) (a) Davidson, R. S. Mol. Assc. 1979, 1, 215. (b) Lewis, F. D. Acc. Chem. Res. 1979, 12, 152. (c) Weller, A. Pure Appl. Chem. 1982, 54, 1885. (d) Mataga, N. Radiat. Phys. Chem. 1983, 21, 83. (e) Calhoun, G.; Schuster, G. B. J. Am. Chem. Soc. 1984, 106, 6870. (f) Yang, N. C.; Gerald, R., II; Wasielewski, M. R. J. Am. Chem. Soc. 1985, 107, 5531 and references therein.
 (3) (a) Maroulis, A. J.; Shigemitsu, Y.; Arnold, D. R. J. Am. Chem. Soc 1978, 100, 535. (b) Pac, C.; Ihara, M.; Yasuda, M.; Miyaguchi, Y.; Sakurai, H. Ibid. 1981, 103, 6495. (c) Mizuno, K.; Ishi, M.; Otsuji, Y. Ibid. 1981, 103 5570. (d) Lewis, F. D.; Devoe, R. J. Tetrahedron 1982, 38, 1069. (e) Mariano, P. S. Acc. Chem. Res. 1983, 16, 130. (f) Mazzochi, P. H.; Wilson P.; Khachik, F.; Klinger, L.; Minamikawa, S. J. Org. Chem. 1983, 48, 2981 (g) Mattay, J.; Runsink, J.; Rambach, T.; Ly, C.; Gersdorf, J. J. Am. Chem. Soc. 1985, 107, 2557. (h) Yasuda, M.; Yamashita, T.; Matsumoto, T.; Shima, K.: Pac, C. J. Org. Chem. 1985, 50, 3667. (i) Hashimoto, S.; Kirimoto, I. Fujii, Y.; Noyori, R. J. Am. Chem. Soc. 1985, 107, 1427.

